A survey of convergence results on particle filtering methods for practitioners
نویسندگان
چکیده
Optimal filtering problems are ubiquitous in signal processing and related fields. Except for a restricted class of models, the optimal filter does not admit a closed-form expression. Particle filtering methods are a set of flexible and powerful sequential Monte Carlo methods designed to solve the optimal filtering problem numerically. The posterior distribution of the state is approximated by a large set of Dirac-delta masses (samples/particles) that evolve randomly in time according to the dynamics of the model and the observations. The particles are interacting; thus, classical limit theorems relying on statistically independent samples do not apply. In this paper, our aim is to present a survey of recent convergence results on this class of methods to make them accessible to practitioners.
منابع مشابه
Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملParticle Approximations to the Filtering Problem in Continuous Time
In this chapter, we survey some recent results on the particle system approximations to stochastic filtering problems in continuous time. First, a weighted particle system representation of the optimal filter is given and a numerical scheme based on this representation is proposed. Its convergence to the optimal filter, together with the rate of convergence is proved. Secondly, to reduce the es...
متن کاملA Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 50 شماره
صفحات -
تاریخ انتشار 2002